LOGIN
|
REGISTER
Thursday, November 14, 2024
Home
Summaries
Country Summary
Site of Action Summary
Site of Action Table
ALS Mutation Database
Graphs
Chronological Increase in USA
Saving Graphs for PowerPoint
Multiple Resistance within Populations
Weeds Resistant to Many SOA's
Global Maps
Chronological Increase
Resistance by Site of Action
Graph Data for Resistance by SOA
Resistance by SOA listing species
Resistance by SOA and Crop
Resistance by Weed Family
Weed Families by # SOA
Top 15 Weed Species by # SOA
Lifecycle Duration for Resistant Weeds vs Weeds in General
Top 15 Herbicides to Select Resistance
ALS inhibitor mutations
ALS inhibitor Mutations - Residue #
#Herbicides for each of the Top 15 SOA's
Recent Additions
Select Multiple Resistance by Country
Resistant Weeds
By Species
By Crop
By Country
By Herbicide Site of Action
By Individual Herbicide
Add New Case
Add New Case of Resistance
Criterion for Confirmation
Herbicides
Herbicide Classification System
Herbicides by Site of Action
Herbicide Poster
Researchers
Login
Log Out
Edit Your Contact Details
Find Researchers
Register as Researcher
Email me my Password
Change my Password
Literature
Search Reference Database
Add a Document
Add a Reference
E-Books
Herbicide Resistant Phalaris minor in Wheat - India
Management of Resistant Weeds in Rice
Prevención y manejo de malezas resistentes a herbicidas en arroz
Help
About US
FAQ
FAQ
Login
FAQ
About Us
Cite this Site
Add New Case
Add Documents
Summaries
US State Map
European Map
Recent Cases
Countries
Sites of Action
All Species by SOA Table
Herbicides
Glyphosate Resistant Weeds
ALS Mutation Database
Sequence Database
Graphs
Global Maps
Herbicide Poster
Herbicide Classification System
Resistant Weeds
By Site of Action
By Crop
By Species
By Country
By Individual Herbicide
Membership
Register
Retrieve Your Password
Edit Your Contact Details
Change Your Password
Contacts
Researchers
Contact Us
ROCK BULRUSH
(
Schoenoplectus juncoides
)
with
GROUP B/2 resistance: (INHIBITION OF ACETOLACTATE SYNTHASE )
Inhibition of Acetolactate Synthase
MUTATION: PROLINE 197 to SERINE
Rock Bulrush
(
Schoenoplectus juncoides
) is a monocot plant in the cyperaceae family. A single amino acid substitution from Proline 197 to Serine has led to resistance to Inhibition of Acetolactate Synthase as indicated in the table below.
Rock Bulrush
Chemical Family
Example Herbicide
Resistance Level
Imidazolinones
Imazethapyr
Susceptible
Pyrimidinyl benzoates
Bispyribac-Na
Susceptible
Sulfonylureas
Chlorsulfuron
Resistant > 10 fold
Triazolopyrimidine - Type 1
Chloransulam-methyl
Not Determined
Triazolinones
Flucarbazone-Na
Not Determined
REFERENCES
Uchino, A., S. Ogata, H. Kohara, S. Yoshida, T. Yoshioka, And H. Watanabe
.
2007
.
Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides
.
Weed Biology and Management
7
:
89 - 96
.
Sulfonylurea-resistant biotypes of Schoenoplectus juncoides were collected from Nakafurano, Shiwa, Matsuyama, and Yurihonjyo in Japan. All of the four biotypes showed resistance to bensulfuron-methyl and thifensulfuron-methyl in whole-plant experiments. The growth of the Nakafurano, Shiwa, and Matsuyama biotypes was inhibited by imazaquin-ammonium and bispyribac-sodium, whereas the Yurihonjyo biotype grew normally after treatment with these herbicides. The herbicide concentration required to inhibit the acetolactate synthase (ALS) enzyme by 50% (I50), obtained using in vivo ALS assays, indicated that the four biotypes were >10-fold more resistant to thifensulfuron-methyl than a susceptible biotype. The Nakafurano, Shiwa, and Matsuyama biotypes exhibited no or little resistance to imazaquin-ammonium, whereas the Yurihonjyo biotype exhibited 6700-fold resistance to the herbicide. The Nakafurano and Shiwa biotypes exhibited no resistance to bispyribac-sodium, but the Matsuyama biotype exhibited 21-fold resistance and the Yurihonjyo biotype exhibited 260-fold resistance to the herbicide. Two S. juncoides ALS genes (ALS1 and ALS2) were isolated and each was found to contain one intron and to encode an ALS protein of 645 amino acids. Sequencing of the ALS genes revealed an amino acid substitution at Pro197 in either encoded protein (ALS1 or ALS2) in the biotypes from Nakafurano (Pro197?Ser197), Shiwa (Pro197?His197), and Matsuyama (Pro197?Leu197). The ALS2 of the biotype from Yurihonjyo was found to contain a Trp574?Leu574 substitution. The relationships between the responses to ALS-inhibiting herbicides and the amino acid substitutions, which are consistent with previous reports in other plants, indicate that the substitutions at Pro197 and Trp574 are the basis of the resistance to sulfonylureas in these S. juncoides biotypes.
.
This case was entered by Patrick Tranel Email:
tranel@illinois.edu
PERMISSION MUST BE OBTAINED FIRST if you intend to base a significant portion of a scientific paper on data derived from this site.
Cite this site as:
Heap, I. The International Survey of Herbicide Resistant Weeds. Online. Internet.
Thursday, November 14, 2024
. Available
www.weedscience.org
Copyright © 1993-
2024
WeedScience.org All rights reserved. Fair use of this material is encouraged. Proper citation is requested.
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##